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Abstract— This paper presents a convex model predictive
control framework for versatile dynamic legged motions with
negligible leg dynamics. The framework utilizes the single rigid
body model linearly approximated around the operating point.
With ground reaction forces as direct control inputs to the
system, no reference control trajectory needs to be specified in
advance. By using the rotation matrix for the evolution of rota-
tional dynamics, issues arising from other representations can
be avoided. Moreover, the rotation matrix is parametrized using
the history of angular velocity without introducing additional
variables. The effect is that we can still take the orientation
into consideration efficaciously without directly working on it.
The framework tackles the robot reference tracking problem
via trajectory optimization, which is formulated into a standard
quadratic program and can be solved efficiently in real time
with guaranteed optimality. It was verified on various legged
robots with different numbers of legs for performing different
types of dynamic motions in the simulation environment. We
thus envision a promising future of the proposed convex model
predictive control framework in legged robots and potentially
in other applications as well.

I. INTRODUCTION

Legged robots, despite their increased complexity com-
pared with other types of robot, have the potential to exert
a much larger influence on human environments in the
future. The articulated limbs provide them with inimitable
possibility of going anywhere a human can go and doing
anything a human can do. While progress has been made,
legged robots are only beginning to fulfill this great potential.

As one of the major challenges, controlling dynamic
motions for legged robots is extremely difficult. First, the
robot movement only results from the contact of the feet
with the environment. These contact forces are strongly
restricted and thus need to be carefully planned to achieve
the desired behavior. Second, the system dynamics is highly
nonlinear and complex, nominally underactuated and unsta-
ble, multi-input and multi-output, as well as time-variant
and hybrid [1]. One of the promising approaches that has
been proven effective is model predictive control (MPC).
It usually considers solving a trajectory optimization (TO)
problem in real time, which determines the control sequences
over a receding prediction horizon into the future. Successful
implementations of whole-body MPC on legged robots have
shown its great capability of simultaneously planning and
controlling complex dynamic motions [2], [3]. However,
directly involving the sophisticated full-body dynamics in
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TO is still computationally expensive and sometimes even
intractable [4]–[8]. As a result, there exist a variety of
methods using the empirically simplified models or so-called
templates [9], which only focus on the most salient aspect of
the system dynamics, such as the linear inverted pendulum
model [10]–[12], centroidal momentum model [13]–[15], and
single rigid body (SRB) model [16]–[23]. Among all these
examples, the SRB model, which assumes negligible leg
dynamics following the popular trend in light leg design [15],
efficiently captures the effect of the net external wrench on
the evolution of both robot body position and orientation.

However, it is still debatable how to properly parametrize
the robot body orientation in an MPC framework. The
orientation is originally described by the rotation matrix
evolving on the manifold of the special orthogonal group
SO(3) [24]. Unfortunately, optimization directly on rotation
matrix leads to an overparametrization of the problem [25].
To solve this issue, many researchers use Euler angles instead
to represent the body orientation [16]–[20]. Despite their
intuitive interpretations, using Euler angles and applying
the regular techniques of Euclidean spaces are not properly
invariant under the action of rigid transformations [25], [26].
Moreover, Euler angles suffer from the singularity issue,
which restricts the robot from performing motions involving
large body angle deviation from the nominal horizontal
plane. Unlike Euler angles, quaternion is a minimal globally
nonsingular representation for orientation [27], but its state
space of 3-sphere provides a double covering of SO(3)
where a single orientation may correspond to two unit
quaternions. This ambiguity should be carefully resolved,
otherwise the unwinding phenomenon would occur where
the body unnecessarily rotates through a large angle even if
the initial orientation error is small [28]. As a consequence,
it is problematic to have the quaternion involved in MPC.
Recently, a variation-based control strategy is proposed for
systems whose dynamics evolves on SO(3) [29]. Instead of
working on the rotation manifold, it considers the orientation
error in the tangent space, the description of which is not
only singularity-free but also invariant to the orientation
configuration [30]. Latest works have demonstrated its sig-
nificant power to robustly stabilize various dynamic legged
motions involving large orientation deviation, either using
the original error dynamics in a nonlinear MPC fashion
[21] or its linearly approximated counterpart in a convex
MPC framework [22]. Nevertheless, intricate nonlinear op-
timization complicates the solving process and suffer local
minima issue, while the variation-based linearization scheme
is rather convoluted and additionally requires prespecifying



a reference control trajectory.
Inspired by the previous works, we address the aforemen-

tioned issues and make the following major contributions.
Unlike the Euclidean space, optimization directly on the
rotation manifold leads to an overparametrization of the
problem [25]. In this work, we propose to parametrize
the rotation matrix using the history of angular velocity.
As a result, we are still able to take the orientation into
consideration effectively without directly working on it. A
novel convex MPC framework of SRB model on SO(3) is
accordingly introduced along with a linearization scheme for
the nonlinear rotational dynamics. The linear approximation
is valid for a short period over the MPC prediction horizon,
which is justified in the simulation environment.

The rest of this paper is organized as follows. Section II
describes the SRB robot model, the parametrization of the
rotation matrix, as well as the linearization scheme. Section
III elaborates the proposed convex MPC framework based on
quadratic programming (QP). To evaluate the performance,
a series of simulations have been successfully conducted and
the results are discussed in Section IV. Section V concludes
the paper with potential future directions.

II. ROBOT MODELING

The robot model of interest is the SRB model subject to
the ground reaction force (GRF) exerted on each stance leg,
which assumes negligible leg dynamics and point contact.
As a result, the entire mass and inertia of the robot can be
considered lumped at the body center of mass (CoM).

A. Single Rigid Body Dynamics

The continuous-time dynamics of the SRB model, as
illustrated in Fig. 1, can be summarized as follows:

ṗ = v, (1a)

v̇ =
1

m

n∑
i=1

fi + g, (1b)

Ṙ = Rω̂, (1c)

ω̇ = I−1

(
R⊤

( n∑
i=1

ri × fi

)
− ω × Iω

)
, (1d)

where p,v ∈ R3 are the body CoM position and velocity,
respectively, fi ∈ R3 is the GRF exerted on the ith foot,
R ∈ SO(3) is the rotation matrix representing the orientation
of the body frame B, ω ∈ R3 is the body angular velocity,
ri ∈ R3 denotes the ith foot location ci ∈ R3 relative to
CoM, m ∈ R is the robot mass, I ∈ R3×3 is the fixed
body moment of inertia tensor, n ∈ N is the number of legs,
and g ∈ R3 is the gravity vector. Note that p, v, fi, R,
ri, ci, g are all expressed in the inertia frame I while ω
and I are described in frame B; ·̂ is the hat operator from
R3 to the space of skew-symmetric matrices s0(3) such that
âb = a×b for all a, b ∈ R3, e.g., if a =

[
a1, a2, a3

]⊤ ∈ R3,

â =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 ∈ s0(3), (2)
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Fig. 1. Single rigid body model. I is the inertia frame and B is the robot
body frame. p, ci, and ri are the position vectors while fi is the GRF
exerted on the ith foot in frame I. Note that the number of legs may vary.

and × is the vector cross product. The variables a and b will
be used frequently later to illustrate other unusual operators.

The continuous-time dynamics (1) is further discretized so
as to make the problem finite-dimensional, using the forward
Euler method as follows:

pk+1 = pk + vk∆t+
1

2
v̇k∆t2, (3a)

vk+1 = vk + v̇k∆t, (3b)
Rk+1 = Rkexp (ω̂k∆t), (3c)
ωk+1 = ωk + ω̇k∆t, (3d)

where ∆t is the sampling period, k ∈ N is the index, and
exp (·) is the matrix exponential operator from s0(3) to
SO(3), also known as Rodrigues’ rotation formula:

exp (â) = I+
sin ∥a∥
∥a∥

â+
1− cos ∥a∥

∥a∥2
â2, (4)

where ∥·∥ denotes the Euclidean norm, e.g., ∥a∥ =
√
a⊤a,

and I ∈ R3×3 is the identity matrix. It also reduces to I for
∥a∥ = 0. Note that ω is assumed to remain constant over
the sampling period to derive (3c).

B. Parametrization of Rotation Matrix

Contrary to the Euclidean spaces, e.g., p, v, ω ∈ R3, it
is problematic to directly involve the rotation matrix R ∈
SO(3) in a mathematical optimization. Working directly
on R leads to an overparametrization of the problem, e.g.,
we parametrize it with nine elements while it is essentially
defined by some vector in R3, which can make the normal
equations underdetermined in the end [25]. In our proposed
MPC framework, we parametrize the rotation matrix using
the history of angular velocity. Iterating (3c) for all the
sampling periods until the first time step we obtain

Rk+1 = Rk−1 exp (ω̂k−1∆t)︸ ︷︷ ︸
=Rk

exp (ω̂k∆t) (5a)

...

= R1

=

Rc

k∏
j=1

exp (ω̂j∆t) . (5b)

Skew-symmetric matrices generally do not commute with
each other and thus their matrix exponentials cannot be



combined, e.g., exp (â) exp (b̂) ̸= exp (â + b̂). With (5b),
the rotation matrix at the (k+1)th time step is parametrized
with the history of angular velocity from the first time step
to the kth time step. Note that the rotation matrix at the first
time step R1 in the MPC framework is considered equal to
the current body orientation Rc, i.e., R1 = Rc is known,
which will be updated for each MPC iteration and can be
presumably measured or estimated.

C. Linearization of Rotational Dynamics

While the translational parts, i.e., position and velocity,
evolve linearly, the rotational parts, i.e., orientation and
angular velocity, are nonlinear in (3). Although recent works
have addressed nonlinear MPC, the nonlinearity inevitably
complicates the solving process, not to mention the problem-
atic initial guess and local minima issues. As a consequence,
we intend to linearize the nonlinear rotational dynamics.

Assuming the variation in body orientation is small over
the MPC prediction horizon, thus applying the power series
of matrix exponential operator to (5b), and only keeping the
terms up to the first order, we obtain

Rk+1 = Rc

k∏
j=1

∞∑
l=0

(ω̂j∆t)
l

l!
≈ Rc

(
I+∆t

k∑
j=1

ω̂j

)
, (6)

which is now linear with respect to the history of ω.
The nonlinearity of the angular velocity dynamics results

from the bilinear terms in (1d). Assuming R and ri will
not change substantially under well-controlled motion, we
can thus consider them as constants, i.e., Rk = Rc and
ri,k = ri,c, for a short time over the MPC prediction horizon,
which will be updated for each MPC iteration and can be
accessed as well. Note that the robot model will always be
correct for the first time step if the current measurements
are close to the actual values. The MPC can also execute
at a sufficiently high frequency, thus preventing it from
divergence due to this rough approximation. Finally, the
bilinear term representing the change in angular momentum
due to inertia tensor rotation is also optimally linearized
around the current body angular velocity ωc as follows:

ωk × Iωk ≈ ωc × Iωc +Λ∗
c (ωk − ωc) , (7)

using OLQP [31], where Λ∗
c is the optimal linear gain matrix.

Note that OLQP linear approximation works for a larger
region of interest than the conventional Jacobian linearization
method. Λ∗

c also converges to ω̂cI − Îωc as the region of
interest gets smaller and smaller around ωc, which coincides
with the Jacobian matrix at ωc.

D. State-Space Formulation

Let us define the state vector and control input at the kth
time step as follows:

xk :=
[
p⊤
k ,v

⊤
k ,ω

⊤
k

]⊤ ∈ R9, (8a)

uk :=
[
f⊤
1,k,f

⊤
2,k, . . . ,f

⊤
n,k

]⊤ ∈ R3n, (8b)

where the GRFs are considered to be the direct control
inputs to the system. Note that the orientation configuration

is excluded from the system since we can easily paramtrize
the rotation matrix either using (5b) or (6), which would
further contribute to the decrease in the number of decision
variables in the MPC framework later.

By rearranging the corresponding equations, the linearized
discrete-time dynamic equations of motion of the SRB model
can be described in the state-space form as follows:

xk+1 = Acxk +Bcuk + dc, (9a)

where the constant matrices

Ac =

 I ∆t I 03×3

03×3 I 03×3

03×3 03×3 I−∆tI−1Λ∗
c

 ∈ R9×9, (9b)

Bc =

 (
0.5∆t2/m

)
· 11×n ⊗ I

(∆t/m) · 11×n ⊗ I
∆tI−1R⊤

c

[
r̂1,c · · · r̂n,c

]
 ∈ R9×3n, (9c)

dc =

 0.5∆t2g
∆tg

∆tI−1 (Λ∗
c − ω̂cI)ωc

 ∈ R9, (9d)

03×3 ∈ R3×3 is a matrix of zeros, 11×n ∈ R1×n is a row
vector of ones, and ⊗ is the Kronecker product for simple
notation. Note that the subscript c in the matrix notations
Ac, Bc, and dc indicates they need to be updated by the
current measurements for each MPC iteration. To sum up,
the nonlinear dynamics (3) is linearly approximated around
the operating point, which results in a linear time-invariant
system and this system is assumed to be valid for a short
period over the MPC prediction horizon.

III. CONVEX MODEL PREDICTIVE CONTROL

This section illustrates the proposed convex MPC frame-
work of SRB model on SO(3). The robot reference tracking
problem is formulated as a mathematical TO problem. Start-
ing from the current state, the goal is to determine an optimal
control strategy over a finite time horizon while satisfying the
various physical constraints, so as to guide the robot along
the reference trajectory. This TO problem can be further
transcribed into a standard QP in the form of

minimize
z

1

2
zTPz + qTz (10a)

subject to Aineqz ⪯ bineq (10b)
Aeqz = beq, (10c)

where z is the vector of the decision variables, the constant
vector q has the same length as z, the constant matrix P is
symmetric positive semi-definite, and (10b) and (10c) cap-
tures all the inequality and equality constraints, respectively.

A. Decision Variables

Given the prediction horizon T as well as the number of
total time steps N = 1 + T/∆t, let us define the vector of
decision variables as follows:

z :=
[
X⊤,U⊤]⊤ ∈ R9(N−1)+3n(N−1), (11a)



where the variables

X :=
[
x⊤
2 ,x

⊤
3 , . . . ,x

⊤
N

]⊤ ∈ R9(N−1), (11b)

U :=
[
u⊤
1 ,u

⊤
2 , . . . ,u

⊤
N−1

]⊤ ∈ R3n(N−1), (11c)

collect the state vectors up to the N th time step and control
inputs up to the (N − 1)th time step, respectively. Note that
the state vector at the first time step x1 is set equal to the
current state xc from measurements, i.e., x1 = xc is known,
and thus does not need to be included for simplicity.

B. Cost Function

For robot reference tracking problem, the very common
quadratic function

J =
1

2

N∑
k=2

∥ep,k∥2Qp,k
+ ∥ev,k∥2Qv,k

+ ∥eR,k∥2QR,k
+

∥eω,k∥2Qω,k
+ ∥uk−1∥2Qu,k−1

(12a)

is used, where the error functions are given by

ep,k = pk − pd,k, (12b)
ev,k = vk − vd,k, (12c)

eR,k = log
(
R⊤

d,kRk

)∨
, (12d)

eω,k = ωk −R⊤
k Rd,kωd,k, (12e)

with the weighted vector norm square ∥e∥2Q := e⊤Qe. Note
that Qp,k, Qv,k, Qω,k, QR,k ∈ S3+, and Qu,k−1 ∈ S3n+ are
the diagonal positive semi-definite weighting matrices, while
pd,k, vd,k, ωd,k ∈ R3, and Rd,k ∈ SO(3) are the corre-
sponding desired references. Therefore, J will be minimized
in terms of overall tracking errors and control efforts in the
least-squares sense. Note that the matrix logarithm operator
log (·) from SO(3) to so(3), which is also the inverse of the
matrix exponential operator, is given by

log (R) =
θ

2 sin θ

(
R−R⊤) , (13)

where θ = arccos ((tr (R)− 1)/2) and tr(·) calculates the
trace of a square matrix. It also reduces to 03×3 for R = I.
The vee operator ·∨ from so(3) to R3 is the inverse of the
hat operator, e.g., â∨ = a, which extracts the vector from
the corresponding skew-symmetric matrix.

The error functions for the rotation matrix eR and angular
velocity eω are proposed in [24]. Both of them are functions
with respect to R, which need to be reparametrized with the
decision variables (11). For eR, substituting (5b) at the kth
time step into (12d) yields

eR,k
(5b)
= log

(
R⊤

d,kRc

k−1∏
j=1

exp (ω̂j∆t)

)∨

(14a)

≈ log
(
R⊤

d,kRc

)∨︸ ︷︷ ︸
ξcd,k

+J−1
r (ξcd,k) log

( k−1∏
j=1

exp (ω̂j∆t)

)∨

(14b)

≈ ξcd,k +∆tJ−1
r (ξcd,k)

k−1∑
j=1

ωj , (14c)

where the inverse of the right Jacobian matrix for exponential
coordinates, given by

J−1
r (a) = I+

â

2
+

(
1

∥a∥2
− 1 + cos ∥a∥

2∥a∥ sin ∥a∥

)
â2, (15)

relates the small variation between SO(3) and so(3) [32].
It also reduces to I for ∥a∥ = 0. Note that to get (14b) we
have taken the first-order approximation for the logarithm
operator [25], e.g., if b is assumed small, we have

log
(
exp (â) exp (b̂)

)∨
≈ a+ J−1

r (a) b. (16)

A similar first-order approximation is also applied to the sec-
ond logarithm in (14b) while all the resulting right Jacobian
matrices can be reduced to I under the assumption of small
variation in rotation matrix, as stated previously. (14c) is now
linear with respect to the history of ω and the subscript cd
of ξcd indicates that it needs to be updated by the current
measurements as well as the desired references for each MPC
iteration. As for eω , substituting (6) at the kth time step into
(12e) we get

eω,k

(6)
≈ ωk −

(
I+∆t

k−1∑
j=1

ω̂j

)⊤

R⊤
c Rd,kωd,k (17a)

= ωk −
(
I−∆t

k−1∑
j=1

ω̂j

)
R⊤

c Rd,kωd,k︸ ︷︷ ︸
ηcd,k

(17b)

= ωk −∆tη̂cd,k

k−1∑
j=1

ωj − ηcd,k, (17c)

which is also linear with respect to the history of ω. Note that
we have applied the properties of skew-symmetric matrices
â⊤ = −â to get (17b) and âb = −b̂a to get (17c), and ηcd

needs to be updated for each MPC iteration as well.
Now that all the error functions (12b), (12c), (14c),

and (17c) are linear with respect to the decision variables
(11). After some calculations and rearrangements, the cost
function J of (12a) can be formulated into (10a) without
considering the trivial constant term.

C. Constraints

Several constraints need to be imposed in order to satisfy
the physical requirements, which are all linear in terms of
the decision variables (11) and thus can be formulated into
(10b) and (10c).

1) Robot Dynamics Constraint: The evolution of the robot
states needs to respect the system dynamics (9) subject to the
control inputs at each time step. We thus have

xk+1 = Acxk +Bcuk + dc (18)

for k = 1, . . . , N − 1. Note that we also have x1 = xc.
2) Ground Reaction Force Constraint: When the ith leg is

in stance phase, the normal component of its GRF fz
i should

first be nonnegative, which indicates

fz
i,k ≥ 0, (19a)



Fig. 2. Simulation results of the monopod robot for the first five seconds.
The figure shows the time history of CoM velocity and body orientation in
each direction. The shaded areas indicate the duration of the disturbances
and the dashed lines indicate the corresponding desired references.

as well as upper bounded so as to avoid actuator overtorque,
which implies

fz
i,k ≤ fz

i,max. (19b)

In addition, to prevent slippage, the GRF should lie within
the local friction cone. The friction cone is linearly approx-
imated by a square pyramid [33], which gives∣∣fx/y

i,k

∣∣ ≤ µfz
i,k ⇒ −µfz

i,k ≤ f
x/y
i,k ≤ µfz

i,k, (19c)

where µ is the ground friction coefficient. Note that (19a) is
already embedded in (19c) and thus can be removed from
the constraints. On the contrary, if the leg is in swing phase,
we need to impose its GRF

fi,k = 0, (19d)

or simply set fz
i,max to zero, which ensures zero contribution

to the system dynamics when the leg is off the ground.

IV. SIMULATION RESULTS

The proposed convex MPC framework of SRB model
on SO(3) was implemented on various legged robots with
different numbers of legs. Each leg was assumed massless
with a conventional three-degree-of-freedom configuration
and a point foot. The original nonlinear dynamic model
(1) was simulated using MATLAB’s ode45 function with
m = 5.0 kg, I = diag (0.026, 0.047, 0.054) kg·m2, and
g = [0, 0,−9.81]

⊤ m/s2.
The computation speed of the QP (10) depends on the

number of legs n as well as the number of time steps N .
For a quadruped robot with n = 4 and N = 6 (∆t = 0.05
s), the processing time including problem formulation can
achieve a frequency of 800 Hz with the off-the-shelf solver
OSQP [34] on a laptop with an AMD Ryzen 5 4500U CPU at
2.1 GHz, which is sufficient for real-time feedback control.
The optimal solution of the control input at the first time step
u∗
1 was used directly on the robot. Several simulations were

tested to evaluate the MPC performance, demonstrated in the
video attachment. Note that the legs were only kinematically
modeled in the simulation for the sake of better visualization.

Fig. 3. Simulation results of the biped robot for the first five seconds. The
figure shows the time history of CoM velocity and body orientation in each
direction.

For all the dynamic locomotion tests, the desired transla-
tional reference was always set in the form of

pd(t) =

[∫ t

0

vxd (τ)dτ,
∫ t

0

vyd(τ)dτ, p
z
d

]⊤
, (20a)

vd(t) =
[
vxd (t), v

y
d(t), 0

]⊤
. (20b)

That is, the robot was desired to move freely in the horizontal
plane while being constrained at some constant height. The
desired orientation reference might vary. The desired foot
placement for each swing leg was determined at touch-down
using the linear combination of Raibert [35] heuristics and
a capture point [36] based feedback term, similar to the
technique used in [22].

A. Monopod Robot

The only feasible locomotion gait of a monopod robot is
hopping. The proposed convex MPC framework was imple-
mented on a monopod with a constant desired orientation
reference Rd(t) = I and ωd(t) =

[
0, 0, 0

]⊤
. A time-based

gait pattern was executed with Tst = Tsw = 0.1 s, where
Tst and Tsw are the nominal durations of stance and swing
phases, respectively. Fig. 2 shows the simulation results for
the first five seconds. The monopod was released slightly out
of balance but was able to quickly stabilize itself by adjusting
its footstep location. To gauge the overall system robustness
in terms of disturbance rejection, two random external forces
with a duration of 0.1 s and a magnitude of 80 N were then
exerted on the monopod but the robot managed to recover.
Afterwards, the monopod was commanded to follow some
predefined velocity reference and ended up with a satisfying
tracking performance, as shown in the video supplement.

B. Biped Robot

The proposed convex MPC framework was implemented
on a biped robot then. For locomotion, a desired orientation
reference was specified in the form of

Rd(t) = Ry

(
−π

2

)
Rx

(∫ t

0

ωx
d (τ)dτ

)
, (21a)

ωd(t) =
[
ωx
d (t), 0, 0

]⊤
, (21b)



Fig. 4. Simulation results of the quadruped robot during bounding for the
first five seconds. The figure shows the time history of CoM velocity and
body orientation in each direction.

where Rx (·) and Ry (·) are the basic rotation matrices about
the x and y−axes, respectively. Note that the robot body was
intentionally rotated to the vertical plane. This is usually the
case where some conventional MPC frameworks fail using
the Euler angles representation as the singularity occurs,
which however can still be handled with our approach. The
gait pattern was still time-based with Tst = Tsw = 0.2 s and
without considering a double support phase. Fig. 3 shows
the simulation results for the first five seconds. The biped
robot was able to quickly stabilize to the steady state at the
beginning from some random initial condition. From t = 2.0
s, it was commanded to track a forward velocity of 1.0 m/s.
Note that the MPC framework enabled the robot to speed
up before the sudden reference change so as to have an
overall better tracking performance. Afterwards, as shown
in the video, the biped robot managed to change the facing
direction while still moving forward. By further adding an
aerial phase, the biped robot could also achieve a stable
running motion. In the end, the robot was commanded to
perform a hopping motion and even backflip. The hopping
motion was naturally achieved by gradually synchronizing
the two leg movements, while the backflip was further
realized by carefully choosing the desired references. After
landing, the robot still managed to stabilize and keep its
balance by adjusting its foot placements using a nominal
walking gait with zero velocity reference.

C. Quadruped Robot

The proposed convex MPC framework was implemented
on a quadruped robot finally. It was verified to be able to
stabilize several typical quadrupedal locomotion gaits, in-
cluding trot, pace, bound, and gallop. Note that the same cost
function was used across all cases with a constant desired
orientation reference Rd(t) = I and ωd(t) =

[
0, 0, 0

]⊤
,

and only the time-based gait pattern needed to be modified
accordingly. For all the gait tests, the robot started with the
same random initial configuration but was able to quickly
converge to the steady state. From t = 2.0 s, it was com-
manded to track a forward velocity of 1.5 m/s. Two external
forces with a duration of 0.1 s and a magnitude of 100 N

Fig. 5. Phase portraits of the body orientation and angular velocity in the
y direction with a constant desired forward velocity of 1.5 m/s and without
external disturbances.

were then randomly exerted on the quadruped body and the
robot managed to resist them. Fig. 4 shows the simulation
results of the bound gait with Tst = 0.1 s and Tsw = 0.15
s for the first five seconds. Fig. 5 further shows the phase
portrait of the body orientation and angular velocity in the y
direction, which demonstrates the convergence to some limit
cycle attractor for each gait. More information can be viewed
in the supplementary video. At the last, we kindly note that
trivial reference trajectories are sufficient to stabilize a wide
range of dynamic legged motions, which illustrates the great
advantage of the proposed MPC framework.

V. CONCLUSION

In this work, a novel convex model predictive control
(MPC) framework of single rigid body (SRB) model on
SO(3) is proposed for versatile dynamic legged motions.
Specifically, it exploits the linearized SRB model around the
operating point, which is verified valid for a short period
over the prediction horizon. With ground reaction forces
as direct control inputs to the system, no reference control
trajectory needs to be specified ahead of time. By working
on the rotation matrix, issues arising from other represen-
tations such as singularity of Euler angles and unwinding
phenomenon of quaternion can be avoided. Moreover, it has
a compact structure since we are able to parametrize the
rotation matrix using the history of angular velocity without
introducing additional variables. The robot reference tracking
trajectory optimization problem is then formulated into a
standard quadratic program, which can be solved efficiently
to meet the real-time constraint. The proposed convex MPC
framework is versatile since it is applicable to various legged
robots with different numbers of legs for performing different
kinds of dynamic motions, as shown in the simulation
environment. Strong robustness is also justified in terms of
external disturbance rejection for robots in operation. We
thus envision a promising future of the proposed convex
MPC framework in legged robots and potentially even in
other applications as well. Future works will focus on how
to properly involve the leg dynamics when it is not negligible
as well as implementations on the real hardware platforms.
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